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Executive Summary
Plug-in cars are in the midst of a boom, accounting for almost every fi�h car bought across the EU in
2021. As their sales soar and performance improves, more and more carmakers are now committing to
go 100% electric from 2030 onwards. But despite the most optimal zero emission technology to
decarbonise cars - batteries - now clear, some in the oil and automotive industry including Bosch[1],
Porsche[2] and Europeʼs oil lobby FuelsEurope[3] are pushing for synthetic petrol and diesel, or
“e(lectro)” fuels instead. These are made by an expensive process which turns electricity into hydrogen,
which in turn is combined with CO2 to produce liquid fuel that can be similar to petrol or diesel used in
conventional engines (as well as kerosene used in aviation). Its proponents claim that if renewable
electricity is used and CO2 is captured from the air, then the e-petrol and e-diesel are climate neutral
fuels that will also reduce pollution. So the argument goes: instead of decarbonising engines, why donʼt
we decarbonise the fuel itself.

T&E decided to put these clean fuel claims to test and commissioned IFP Energies Nouvelles to run a
series of lab based tests simulating real-world driving (WLTC and RDE) to measure the emissions of
different e-petrol blends in an A-class (A180) Mercedes. Despite much publicity from some auto
suppliers and the oil industry, the e-petrol to perform the tests could not be purchased due to lack of
commercial production, IFPEN had to blend three e-fuel blends representative of potential future fuel
that are compatible with petrol cars. Two different 100% e-petrol blends and one blending 2nd
generation ethanol (10%) and e-fuel were made. The emissions were compared to the standard E10 EU
petrol.

Beyond particles, other emissions are stable or higher with e-petrol
The results of pollutant emissions show that:

● No difference in NOx emissions were observed for any of the e-fuels tested either on the lab or
on road tests compared to todayʼs petrol fuel. This means that e-fuels emit the same amount of
NOx pollution as fossil fuels today, so the use of e-petrol in cars will have little impact on NOx
emissions which are at the heart of toxic NO2 pollution across Europeʼs cities.

● A substantial decrease in particle emissions was observed on all tests. The number of
particle emissions (PN) larger than 10 nm decreased by 97% on the lab test, and by 81-86% on
the RDE test cycle. While this was a significant improvement compared to the fossil fuel tested -
and is many times below the legal limit - the very large number of particles emitted out of the
exhaust in the first place meant that particle pollution was far from eliminated. Even with the
use of 100% e-petrol blends, at least 2.2 billion particles were still released for every kilometer
driven. There was no difference observed in particle mass (PM) emissions.
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● Toxic carbon monoxide emissions were much higher with the e-petrol blends tested.
Emissions were up to almost 3 times higher on the lab WLTC test and 1.2-1.5 times higher on the
RDE test compared to fossil fuel. The largest increase in emissions occurred when the engine
was first switched on, which happens o�en in towns and cities.

● Hydrocarbon emissions, i.e harmful chemical compounds made of hydrogen and carbon,
decreased by 23-40% on the WLTC test but no difference was observed on the RDE test due
to low emissions for all fuels. Emissions of dangerous but not yet regulated aldehydes -
acetaldehyde and formaldehyde - decreased with the use of e-fuels when the engine was first
switched on, but no significant difference was seen on the test overall.

● Ammonia emissions of two e-petrol blends roughly doubled on the RDE test, with emissions
particularly increasing a�er the engine is first switched on (cold start) which frequently occurs in
towns and cities. These results indicate that some e-petrol blends may cause an increase in
ammonia emissions which is a precursor to PM2.5 pollution.

Overall, the testing shows that e-petrol is not a clean fuel and, beyond particles, will do little to reduce
toxic pollutant emissions of both regulated and unregulated pollutants compared to petrol fuel used
today. The previous testing conducted by CONCAWE[4] - the oil industry association - showed that,
similarly, e-diesel has little impact on improving pollutant emissions. At a time when over 400 thousand
Europeans die prematurely from air pollution[5] and 2 out of 3 citizens of the EUʼs biggest cities demand
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cleaner air, Europe needs a credible plan to slash toxic pollution from cars, one of the biggest sources of1

air pollution. Unlike emissions-free electric cars, e-petrol and e-diesel will not help as they will not
eliminate or significantly reduce pollution. As long as fuel -synthetic or not- is burnt, or combusted in
engines rather than being replaced by electricity, toxic air pollution in cities and beyond will persist.

Using e-fuels in cars is not climate neutral
It is assumed that the use of renewable e-petrol or e-diesel in cars is climate neutral as the CO2 emitted
from burning e-fuels in an engine is equal to the CO2 captured for the production of the fuel itself. This is
already a big assumption as it requires huge amounts of renewables to produce 100% green hydrogen
and power the process, as well as direct capture of CO2 from the air - a technology that is not yet widely
available - to compensate for the CO2 that is released when e-fuels are burnt in engines. But T&Eʼs tests
show that there are additional climate damaging emissions beyond CO2. Burning e-petrol in a
combustion engine produces two more potent greenhouse gases: methane (CH4) and nitrous oxide
(N2O). (Similarly, these gases were also found to be emitted by e-diesel in tests performed by
CONCAWE[4].) These are not taken into account in the above “climate neutrality” claims.

T&E measured the emissions of these GHG and calculated that the Mercedes running on e-petrol and
driving the EU average of 12,000km, would emit the equivalent of an additional 7-9kg of CO2 a year.
While relatively small per car, T&E calculates that if all new diesel and petrol cars sold in 2020 ran on
e-petrol or e-diesel, the additional CO2 (from methane and nitrous oxides) would be equivalent to
around 50,000 extra fossil fuel cars on the EUʼs roads in just one year. As the real world emissions of the
two gases vary depending on driving conditions such as temperature, length of trip etc. it is doubtful
whether the emissions of these gases from cars running on e-fuels could ever be effectively counted and
offset through initiatives such as carbon capture and storage. These unaccounted for climate warming
emissions, while in small amounts, put nonetheless into doubt the notion that e-fuel burnt in cars is
fully climate neutral.

E-fuels are not a solution EU drivers can afford
T&E[6] has already shown that even under the most optimistic assumptions for the price of e-fuel in
2030, a driver with a petrol car running on e-fuel would be €10,000 worse off than a BEV owner on a
5-year usage basis. T&E estimates that getting CO2 credits for e-petrol or e-diesel - as pushed for by the
oil & gas and auto suppliers industries - would also be expensive for car makers, costing them three
times more than producing battery electric cars in 2030.

E-fuels are also more expensive for second hand cars, which over 5 years is still almost €10,000 more
expensive than owning a second hand BEV. Even buying a new BEV will be cheaper. The high e-fuel
prices mean that running an older car on e-fuels is not a realistic choice for EU consumers, and would
particularly hurt drivers in Central, Southern and Eastern Europe. Blending e-fuels into traditional fuels

1 A pan European by YouGov of 21 of Europeʼs largest cities shows  that 2 out of 3 do not want to go back to the
levels of pollution experienced before the lockdown. Source:T&E. No going back: European public opinion on
air pollution in the Covid-19 era.
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may also be more difficult than the industry suggests: when T&E first added ethanol to e-petrol, it would
not blend so IFPEN had to add fusel oil to ensure miscibility. The added complexity might make e-fuels
more expensive. What European consumers need is not expensive e-petrol but affordable mass market
electric models - via the ever stricter CO2 standards on EU carmakers - as well as cheap second hand
BEVs alongside better public transport and shared mobility.

Making enough e-fuels for Europeʼs existing car fleet is not feasible
Alongside the pollution from burning e-petrol or e-diesel in a conventional car, using e-fuels is also a lot
less efficient than direct electrification. It takes almost five times more renewable electricity to drive a
conventional car running on e-fuels the same distance as a battery electric car. While we need to replace
fossil fuels with synthetic kerosene in planes or with synthetic ammonia in shipping because no other
zero emission technology is yet available for those sectors, using e-petrol and e-diesel in road transport
is simply a waste of green electrons that are needed elsewhere.

While production of electric cars is already in millions and ready to replace fossil fuels, the availability of
e-petrol and e-diesel in the EU is close to zero. When T&E tried to obtain less than 100l of e-fuel for
testing either directly or through IPFEN, there was none available to buy. Given its inefficiency, a huge
amount of e-fuels would be needed to decarbonise even a fraction of new car sales in 2030, yet alone
the  252 million ICE cars which would be on the road in 2030 .

T&E estimates that the newly proposed 2030 car CO2 target of -55% would require an additional 3.7
million BEVs on the road compared to current policies. If these BEVs were replaced with fossil cars
running on e-fuels, 23 billion litres of e-fuel would be needed in 2030 alone. That is equivalent to 189
e-fuel plants with 240 million litre capacity each (similar to an e-fuel plant in Austria which may reach
such capacity in 2030) . Such scale up is not feasible based on what has so far been announced and -2

crucially - this would divert production of synthetic fuels or green hydrogen from the sectors such as
aviation or steel where they are most needed. On the contrary, a boom in battery investments in Europe
means that there will be sufficient battery cell supply to power most EU cars by 2030.

2 Based on the assumption that 50% of capacity is dedicated to aviation and 50% to road, an optimistic
assumption.
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Conclusion & recommendations
This testing programme shows that e-petrol used in cars will perpetuate Europeʼs air pollution
problems and, given some unaccounted for greenhouse gas emissions, cannot be considered fully
climate neutral. The very complexity of producing e-fuels might sound like green magic to
non-experts - capable of making engines zero emission, which was previously impossible. But a closer
look shows that taking all that renewable electricity to make green hydrogen (both clean
technologies) and adding CO2 captured from air (thus reducing atmospheric CO2) results in a fuel that
once again emits toxic pollution. No amount of magic can overcome the basic laws of
thermodynamics.

The urgency with which we have to decarbonise all sectors of our economy does not allow us to bet on a
not yet commercially available technology in a sector where a superior zero emission alternative -
battery electric cars - already exists and is sold in millions. Losing focus away from electrification of road
transport risks diverting resources and delaying scaling up of battery electric vehicles. Betting on
e-petrol and e-diesel, either for new or existing fleet, will undermine Europeʼs zero emissions ambitions
as we risk arriving in 2030 with no “green magic” fuels available, only extra emissions. To avoid this
scenario, T&E recommends:

1) Car, van and truck CO2 standards for engines should not allow any, even voluntary, CO2

credits for e-fuels, but should instead be regulated via EUʼs fuel legislation such as the
Renewable Energy Directive. Instead, the post-2020 EU car CO2 standards should lead to a mass
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market of electric cars by requiring carmakers to achieve a 30% CO2 cut by 2025, at least 45% by
2027 and 80% by 2030, coupled with a 100% zero emission vehicles sales goal by 2035 latest.

2) Given similar levels of air pollution from synthetic and fossil fuels, a new ambitious Euro 7
standard, that cuts pollutant emissions from all fuels regardless of vehicle type, is required
for new cars, vans, trucks and buses from 2025 onwards.

3) No EU or national targets, nor specific financial support should be provided for the use of
e-fuels in road transport. Instead, renewable and sustainable e-fuels should be supported in
sectors where no better alternatives exist. This includes setting renewable e-fuel targets for
aviation and shipping in RefuelEU and FuelEU Maritime.

The use of e-fuels in road transport is not innovative or new, it is a technology which takes green
electrons from renewable electricity and transforms them into a toxic hydrocarbon - an outdated fuel
of the 20th century. As such, it is a Trojan Horse to continue oilʼs business as usual and delay the
transition to true zero emission technologies.
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Preamble
Many carmakers are already committed to a zero emission, electric future to allow the EU to meet its
climate targets. Yet some carmakers, suppliers and the wider oil and gas industry are proponents of an
alternative decarbonisation pathway and are heavily advocating for the use of so-called synthetic fuels/
e-fuels instead of fossil fuels in internal combustion engine cars. Rather than decarbonising the engine -
their line of argument goes - why not decarbonise the fuel itself?

However little is known about the air pollution impact of using e-fuels in road transport. Therefore, in
2021 T&E Commissioned IFPEN (IFP Energies Nouvelles), based in France to investigate the emissions of
both regulated and unregulated pollutants emitted from the combustion of e-petrol in a Mercedes A180.

The results of the testing are presented in Part 1 of this report which includes chapters 2-4. Part 2
(chapter 5) of the report covers broader considerations of using e-fuels in road transport already explored
in other T&E reports with updated modelling based on newly proposed car CO2 reduction targets
proposed by the European Commission. Both parts of the report can be read standalone.
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PART 1
1. Introduction

Cars cause two main environmental problems in Europe.
The first major problem from cars are greenhouse gas (GHG) emissions, including carbon dioxide (CO2),
methane (CH4) and nitrous oxide (N2O) drive global warming. In Europe, cars alone are responsible for
12% of all GHG emissions[7]. Increased car mileage, the rise of the SUV and a failure to reproduce lab
based CO2 savings on the road have resulted in carʼs CO2 emissions growing since 1990 culminating in 481
million tonnes of CO2 emissions in 2019 alone[8]. Until last year, average new car CO2 emissions were on
an upwards trajectory[9]. Only due to an introduction of manufacturer fleet average CO2 targets for new
cars of 95g/km last year, which forced carmakers to increase sales of electric vehicles (EVs), did new car
CO2 emissions fall by 12%[10].

However, this is still a minor reduction compared to the decarbonisation challenge that the EU faces to
achieve its Green Deal net zero greenhouse gas emission target by 2050, which requires a rapid reduction
in emissions from road transport. To facilitate this transition the European Commission has, in the
summer of 2021, proposed new, more stringent CO2 targets for cars than the already agreed 37.5 % fleet
average reduction required in 2030. If the Commission proposal is adopted, new car fleet average CO2

emissions will need to decrease by 55% in 2030 and 100% in 2035[11]. The evidence suggests this needs
to be even higher if new cars are to be on track to become zero emission by 2035 and contribute their fair
share to Europeʼs climate goals[12].

The second problem is air pollution. Polluted air caused by road transport exacerbates a wide range of
illnesses including respiratory diseases such as asthma, cardiovascular disease, diabetes and cancer
resulting in tens of thousands of premature deaths[13] and tens of billions in healthcare costs
annually[14]. Road transport is the largest source of nitrogen oxide (NOx) emissions[5] - the pollutant at
the heart of the dieselgate scandal. In Europeʼs big cities where high traffic volumes result in poor air
quality, cars contribute to between 33-54% of transport NO2 emissions- the toxic fraction of NOx[15]. In
addition to NO2, cars emit a wide range of other toxic pollutants including particles-with road transport
being the third largest source of PM2.5[5], carbon monoxide (CO) and hydrocarbons (HC). Many cities still
fail to meet EU Air Quality limits and new World Health Organisation (WHO) guidelines published in 2021
recommend significant reductions in pollutant air concentrations of key transport air pollutants
compared to current EU limits: a 75% reduction in NO2 and an 80% reduction in PM2.5, while warning that
there is no safe level of air pollution[16]. Reduction of air pollution and improvement of air quality is a key
deliverable of the European Green Deal, detailed in the EUʼs Zero Pollution Action Plan[17]. As one of the
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largest sources of air pollution in Europe, road transport emissions will have to decrease rapidly to meet
these targets.

Carmakers plan to sell EVs to meet CO2 targets, yet some industries push e-fuels
Many carmakers such as VW are committed to reaching the upcoming fleet average CO2 targets through
the rapid expansion of battery electric vehicle (BEV) sales, the most optimal zero emission technology to
decarbonise cars today. VW expects 60% of group wide sales to be BEV by 2030[18], Volvo and Ford have
set even more ambitious targets of 100%[19]. This strategy makes sense both for carmakers and the
environment. The rapid uptake of BEVs by consumers keen to switch from conventional models (ICE)
vehicles to greener alternatives has seen sales of BEVs skyrocket from just 1.9% in 2019 to 5.4% in
2020[20]. This year sales are expected to reach 8.5%[20]; in the third quarter of 2021, 1 in every 10 cars
sold was a BEV[21]. Higher CO2 targets in 2025 (-15%) and 2030, purchase price parity between BEV and
ICE expected in 2025-2027 as well as a reduction in price therea�er (the average medium electric car is
expected to be 18% cheaper than a petrol equivalent by 2030) is further predicted to boost sales. Mass
market penetration coupled with the high energy efficiency of direct electrification, expansion of the
charging network and the expected low availability of zero emission alternatives such as hydrogen fuel
cell cars means that BEVs are forecast to be the cheapest and most efficient pathway to decarbonising
cars.

Alongside the climate benefits and the reduction in vehicle noise, the added benefit of switching away
from ICE to BEVs is the complete elimination of toxic tailpipe pollution which contributes to poor air
quality, especially in towns and cities where traffic volumes are high. Switching to zero emission vehicles
is expected to significantly improve air quality in European cities by eliminating one of the biggest
sources of air pollution[22].

However, while many carmakers are already committed to a zero emission, electric future, some
carmakers, suppliers and the wider oil and gas industry are proponents of an alternative decarbonisation
pathway. Porsche[2], Mazda[23], Bosch[1], CLEPA (European Association of Automotive Suppliers)[24] ,
Fuels Europe[3] and others are heavily advocating for the use of so called e-fuels instead of fossil fuels in
internal combustion engine cars as a route to eliminating greenhouse gas emissions from new cars, as
well as the existing fleet of cars already on the EUʼs roads. Instead of decarbonising the engine - their line
of argument goes - why not decarbonise the fuel itself? T&E has tested a number of potential efuel
combinations to show what effect this would have on pollutant and greenhouse gas emissions from cars
in the future.

1.1 What are e-fuels?
E-fuels are synthetic hydrocarbons refined from a power-to-liquid (PtL) process. The process combines
hydrogen and carbon monoxide or CO2 through a complex chemical reaction, or the Fischer-Tropsch
process. The resulting synthetic e-fuel produced is not a single fuel, but a mix of different hydrocarbons
i.e. the same type of chemicals that make up fossil fuels. As with fossil fuel oil, a refinery process is used
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to split the crude e-fuel into specific fuel fractions for specific uses such as e-kerosene (for aviation) or
e-diesel and e-petrol for use in road transport. The e-fuel industry states that the e-diesel or e-petrol can
then be used both in new cars and within the existing fleet of cars either as a drop-in fuel i.e blended into
fossil petrol or diesel or used as a stand alone fuel[25].

1.2 What impact do e-fuels have on pollutant emissions?
When it comes to climate impacts, the origin of the hydrogen and CO2 determines if the e-fuel can be
considered as carbon neutral. Only when e-fuel is produced using green hydrogen (i.e. electrolysis from
water from additional renewable electricity such as solar or wind) and the CO2 captured directly from air
(direct-air capture, DAC) and not from industrial emissions, can the e-fuel be considered to be carbon
neutral. This is because the net amount of CO2 emitted through combustion of the e-fuel should be the
same as the amount of CO2 captured for its production. The additional renewable electricity ensures that
the renewables are not diverted from other sectors that would then require non-renewable electricity
sources.

When it comes to air pollutants, there is little test data available on the impact of car pollutants emissions
associated with switching from fossil fuels to e-fuels - likely due to the lack of availability of e-fuels on the
market. Nevertheless, the E-fuels Alliance insists that ʻe-fuels emit significantly less nitrogen oxide and
particulate matter than conventional fuelsʼ[24]. The German Mechanical Engineering Industry Association
(VDMA) states that ʻthe combustion of e-fuels is very clean and can be brought down to a level close to
zero with exhaust gas a�ertreatment technology availableʼ[26].

A recent study by the CONCAWE[4] investigated pollutant emissions from a diesel Euro 6d-temp car
running on e-diesel and found little difference in the emissions of the e-fuel compared to fossil diesel.
There was a slight reduction in NOx emissions however particle emissions increased.

Due to limited data on the pollution impact of switching from fossil fuels to e-fuels, in 2021 T&E decided
to investigate this issue further commissioning IFPEN (IFP Energies Nouvelles), based in France to
investigate the emissions of both regulated and unregulated pollutants emitted from the combustion of
e-fuels. The focus of the study was directed towards potential future e-petrol blends due to the lack of
evidence available on pollutant emissions from e-petrol as well as the higher sales of petrol vs. diesel cars
in the EU. Due to the lack of e-fuels available in the market at the time of testing, IFPEN blended potential
future e-fuel candidates which are representative of future e-petrol blends that could be sold in the EU
and would be compatible with new vehicles as well as the existing fleet. The emissions of a Mercedes A
class Euro 6d-temp car were measured on the chassis dyno over the World Harmonised Light Vehicles
Test Cycle (WLTC) and a Real Driving Emissions (RDE) type cycle more representative of the different
driving conditions encountered on EU roads. The emissions with three different e-fuels were measured
and compared to the emissions when running on standard EU E10 petrol.
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2. Methodology
In 2021, T&E commissioned IFP Energies nouvelles (IFPEN) based in France to undertake the emissions
testing of a petrol car running on different e-fuels on laboratory based chassis dyno tests representing
both type-approval and real world driving conditions. As no e-fuels were available for purchase due to
their limited production in pilot plants only, IFPEN developed custom e-fuel blends to test, representing
e-fuels that could be brought to the EU market in the future. The emissions measured from the fuels were
benchmarked against standard E10 fuel used in official type-approval tests in the EU.

2.1. The Fuels
T&E chose to focus this study on the pollutant emissions impact of switching from petrol fossil fuel to
petrol e-fuel as a diesel e-fuel has already recently been tested by CONCAWE[4]. Additionally, petrol cars
now make up most new car passenger car sales at 48% in 2020 compared to 28% for diesel[27] and within
the next decade diesels share is expected to decline further. This can be seen from future EU car
production data which shows that while petrol carsʼ share is expected to remain broadly constant up to
2030, dieselʼs share is expected to fall from 30% at the start of the decade to just 5% in 2030[28]. By
focusing on petrol the study ensures that the results will be applicable to most new cars sold within the
next decade.

As e-fuel production is currently at pilot scale, producing only small batches of fuel, it was impossible to
obtain e-fuel produced directly from renewable energy and water electrolysis to use in this testing
programme (T&E needed less than 100l for the testing). Therefore, as part of the project IFPEN were
tasked with blending three e-fuels which are representative of potential future e-fuels that could be
brought to the EU market, from the relevant chemical components made from non-renewable sources.
These included light aromatics (< C8) and C5-C8 hydrocarbons including linear and branched alkanes such
as isopentane, isooctane and alkeneʼs such as diisobutylene. The e-fuel blends were prepared with the
objective of producing fuel blends which are representative of potential future EU e-petrol blends which
are compatible with the EU EN228 fuel specification and have good combustion properties in order to
ensure existing fleet capability.

Three different e-fuel blends were prepared:

E-fuel 1: 100% paraffinic e-fuel i.e a blend with 100% hydrocarbon chains and no ring shaped
hydrocarbon with delocalised electrons such as benzene (i.e. aromatics). Future e-fuels are likely
to be mostly paraffinic blends as these are the chemicals produced during the Fischer-Tropsch
process. This is an e-petrol blend which ensures efficient combustion and is representative of a
basic e-fuel blend that could be brought to the EU market.
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E-fuel 2: 90% paraffinic e-fuel, 10% aromatic e-fuel, some aromatics may be added to e-fuels
in the future to improve the combustion properties of the fuel. Therefore, in this blend 10%
aromatics are included to check the effect that this could have on pollutant emissions.
E-fuel 3: 90% paraffinic e-fuel, 10% 2nd generation ethanol. Fuel manufacturers may consider
future use of e-fuel and 2nd generation ethanol blends to reduce the fuel cost and increase total
volume of renewable fuel available in the market. A 10% blend was chosen due to existing fleet
and EN228 standard compatibility. Adding ethanol to the paraffinic e-fuel blend did not work due
to miscibility issues. The ethanol and e-fuel would separate out similarly to oil and water. This
could not be solved with addition of up to 20% aromatics into the blend. Finally, 1% fusel oil had
to be added to the blend for the ethanol not to separate out.

The baseline fuel (representative of current market fuel) used to compare the effect of e-fuels on
emissions during this testing was an E10 homologation grade fuel blend compatible with the EN228
standard and EU Regulation 2008/692/EC. Analysis results of the four fuels tested are included in Annex 1.

2.2 The car
A Mercedes A180 was chosen by T&E for the tests and sourced independently of T&E by IFPEN. The car
obtained was a Euro 6d-temp, 4 cylinder, 1.3L, 6-speed manual car, fitted with a gasoline particulate filter
(GPF) and registered in 2019 with a full service history. The mileage at the start of testing was 17,000 km.
Prior to the start of testing the vehicle underwent a visual inspection as well as an OBD fault code check
to ensure that the vehicle was not damaged and suitable for testing.
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Figure 1. The Mercedes A180 used for the testing programme.

2.3. The tests
Ahead of testing with each new fuel the following fuel change protocol, as described in CONCAWEʼs latest
study on emissions effects of fuels[4], was used:

1. The vehicle fuel tank was completely drained.
2. Five litres of the new fuel were added to the tank and the vehicle was run at idle for 10 minutes to flush
the old fuel from the fuel system.
3. The tank was drained again and the tank filled with the new fuel ready to test.

A�er the fuel change procedure was complete, the vehicle was soaked at 23℃ overnight. Chassis dyno
parameters for all tests were set in accordance with the carʼs Certificate of Conformity (CoC). Start & Stop
was deactivated during testing to reduce test to test variability as it could not be guaranteed that
stop-start would always function the same on each test. Soaking was followed by the 23 ℃ cold start
WLTC used for type-approval of cars in the EU. A�er the completion of the WLTC a hot start 23℃ RDE
based test cycle followed. The RDE cycle used for the testing was identical to that used by IFPEN to test
the performance of Euro 6d-temp cars in a study commissioned by the French government[29] and is
representative of the typical driving urban, rural and motorway driving that occurs in the EU. The details
of the RDE test cycle and the speed trace are presented in Annex 1 and figure 2 below. Each test cycle was
repeated twice for each fuel including the overnight soaking.

Figure 2. RDE test cycle driven on the chassis dyno.
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2.4. Pollutant measurements
Both the raw emissions coming out of the engine and the tailpipe pollutant emissions were measured on
all tests. Engine out emissions were sampled ahead (upstream) of the close coupled three way catalyst.

Tailpipe emissions were diluted through a constant volume sampling (CVS) tunnel prior to sampling aside
from formaldehyde and acetaldehyde which were measured by AVL SESAM FTIR from the raw exhaust
emissions. Nitrogen oxides (NO, NO2 and NOx), methane (CH4), hydrocarbons (HC), non-methane
hydrocarbons (NMHC) carbon monoxide (CO) as well as CO2 were measured by Horiba MEXA-ONE
analysers. The unregulated pollutants nitrous oxide (N2O) and ammonia (NH3) were measured by
quantum cascade laser (QCL). PN larger than 23 nm was measured using a condensation particle counter
(CPC) 100 and PN larger than 10 nm was counted using an SPCS 2020. All emissions were measured at
1 Hz aside from Particulate Matter (PM) which was measured using the gravimetric filter method.

Engine out pollutant emissions measurement included all regulated gas pollutants. Nitrogen oxides (NO
and NO2, components of NOx), methane (CH4), hydrocarbons (HC), non-methane hydrocarbons (NMHC)
carbon monoxide (CO) as well as CO2 were measured continuously at 1 Hz using a raw emissions
sampling system combined with the Horiba MEXA-ONE analyser. In addition, particle number (PN)
emissions of all particles larger than 10 nm were measured by a Horiba MEXA 2110 Solid Particle Counting
System (SPCS).

3. Test Results
This section presents the pollutant emission results of the Euro 6d-temp petrol car running on European
E10 petrol and on 3 petrol e-fuel blends on the WLTC and RDE test cycles. Results are presented as the
average of the two WLTC or RDE test cycles.

3.1 Nitrogen oxide (NOx)
Both nitrogen oxide (NO) and nitrogen dioxide (NO2) are emitted from internal combustion engines (ICE)ʼs
regardless of the fuel used due to the combustion (i.e. burning of fuel) process. While NO2 is the toxic
component of NOx, NO is converted to NO2 in ambient air. As such the regulation of the tailpipe emissions
of both is necessary, and for petrol cars the Euro 6 regulation stipulates a combined nitrogen oxide (NOx)
emission limit of 60 mg/km, CLOVE (the consortium working on behalf of the Commission to help develop
new car emission standard) proposes reducing the limit to 20mg or 30 mg/km[30] for the future Euro 7
standard which is currently under development by the European Commission[31].

NO2 causes a wide range of serious negative health effects including inflammation of the airways, reduced
lung function and increased asthma attacks[32]. In the EU, in 2018 54,000 people died prematurely due to
NO2 pollution and EU citizens living in urban areas continue to be exposed to illegal levels of2[5]. In 2021,
the World Health Organisation (WHO) published new air quality guidelines which require further
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reductions in NO2 pollution of 75% compared to current EU limits[16]. As road transport remains the
largest source of NOx emissions[5], significant reductions in road transport emissions will be required to
meet the new WHO guidelines.

3.1.1 NOx emission results
Overall, tailpipe NOx emissions remained within Euro 6 limit on all tests and virtually unchanged between
the four different fuels and test cycles (figure. 3) with average WLTC lab E10 emissions of 24 mg/km and
average e-fuel 1-3 emissions of 22-23 mg/km. E10 on-road RDE emissions were 21 mg/km compared to
21-22mg/km for the e-fuel blends. Variability in average NOx emissions between the different fuels were
within the variability witnessed between tests thereby indicating that the petrol e-fuels tested have no
impact on tailpipe NOx emissions and remain at the same levels as with traditional fuels. Based on
this, we calculate that this car driving 12,000 km a year would emit at least 250g of NOx a year .3

However, annual emissions in the real-world are expected to be higher as the vehicle was tested at
the optimum type-approval temperature of 23℃. More demanding driving conditions such as many
short trips, wind, colder or hotter weather are likely to result in higher annual emissions.

Figure 3. Average nitrogen oxide (NOx) emissions of E10 and the three e-fuels on lab WLTC and RDE test cycles.

3.2 Particles
Particle pollution is increasingly seen across Europe as the biggest problem for air quality, with the latest
report by the European Environmental Agency indicating that PM2.5 (particulate matter smaller than 2.5

3Based on whole test RDE results.

A study by 19

https://paperpile.com/c/deu6bO/Opxm
https://paperpile.com/c/deu6bO/yntz


micrometer) pollution was responsible for 379,000 premature deaths in the EU in 2018[5]. Particle
pollution is also a contributing cause for a wide range of diseases including Alzheimerʼs[33], cancer as
well as cardiovascular and respiratory illnesses[16].

The WHO stresses that for particles there is no safe level of pollution[16] . Road transport remains the
third biggest source of PM2.5 pollution in the EU and progress in the reduction of PM2.5 pollution in Europe
has effectively stalled at a point where 7 out of 10 residents of European cities breathe air above the
previously recommended 10 µg/m3 WHO limit[5]. New WHO guidelines published in 2021, further reduce
the recommended limit for PM2.5 exposure by 50% (to 5 µg/m3).

Tailpipe particle emissions from petrol cars are regulated through two different tailpipe emission limits:

1) Particulate mass (PM) which regulates the total mass of particles emitted out of the exhaust and for
Euro 6 is set at 4.5 mg/km.

2) Particle number (PN) which regulates the total number of particles emitted out of the exhaust which
are larger than 23 nm. For Euro 6 the limit is set at 6x1011/km.

Both PM and PN emissions are regulated at the tailpipe as it is not just the total mass of particles in the air
that determines particle pollution's negative health effects. It is also the size and number of particles that
is important. Very small particles, especially ultrafine particles which are less than 100 nanometers in
size, are increasingly considered as potentially the most dangerous for health. Medical studies have
shown that these particles are able to deposit in the lungs and airways with very high efficiency and,
unlike larger particles, can evade the body's immune defences. This means that they are not readily
removed and can accumulate within the body[34]. Once deposited in the lungs, they can also travel to
other areas of the body such as the brain[35] and the placenta[36]. Medical studies show that even short
exposure to these particles can cause changes in heart function[16] and these particles have been linked
to an increased risk of heart disease[37] and brain cancer[38].

However due to their small size, o�en smaller than a typical virus, they contribute little to the total mass
of particles emitted. For example, for ambient air, the previous WHO air quality guideline for PM2.5 was 10
µg/m3. One large 2500 nm particle per cm3 of air will reach this threshold but for ultrafine particles of 20
nanometers in size, 2.4 million particles are needed per cm3[39]. Therefore to effectively limit the
emissions of these small particles a tailpipe particle number emission limit is necessary.

CLOVE proposes to reduce the particle number emission limit, for cars for Euro 7, from 6x1011/km to
1x1011km[30], a significant reduction. Howerever, no amount of particle pollution is safe, so ideally we
should get to as close to zero as possible. IFPEN measured PM, regulated >23 nm PN (PN23) emissions
and currently unregulated 10-23 nm PN by measuring all particles larger than 10 nm with an additional
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analyzer. 10 nm particle emissions are also likely to be regulated as part of the new Euro 7 emission
standard.

3.2.1 Regulated particle emissions results
Both PM and PN23 emissions were measured on all tests. PM emissions for all fuels, on all tests were low
<0.1 mg/km. As the uncertainty of the measurement is higher than the emissions measured, no fuel
impact on emissions could be deduced.

Emissions of PN23 were below the Euro 6 limit of 6x1011/km for all tests as well as the proposed future
Euro 7 1x1011/km limit. A large decrease in emissions was observed for all three e-fuels compared to E10
throughout the entire test. On the WLTC tests average PN23 emissions of the three e-fuels were 97-98%
lower than E10 emissions. On the RDE tests the reduction was smaller of between 82-87% (figure 4).

Figure 4. Larger than 23 particle number (PN) emissions of E10 and the three e-fuels on lab WLTC and RDE test
cycles.

The decrease in particle emissions observed for the e-fuels is likely mainly related to the low aromatic
content of the e-fuel blends, <0.1% for e-fuel 1 and 3 and 10% for e-fuel 2 compared to E10 (26%) as
detailed in the fuel analysis results in Annex 1. It is likely that future e-fuels will have low aromatic content
as non-aromatics are produced by the Fischer-Tropsch process. Increasing aromatic content in petrol
blends has been shown to increase particle number emissions[40] with the effect likely due to large
(heavy) aromatics[41] and their incomplete combustion. Aromatics have a lower hydrogen to carbon ratio
compared to aliphatic hydrocarbons and require higher air to fuel ratios for efficient combustion.
Aromatics are therefore more likely to result in incomplete combustion and particle/soot formation than
aliphatic hydrocarbons. No significant difference was observed in the PN emissions of e-fuel 2 compared
to e-fuel 1 or 3 likely because the blend did not contain any heavy aromatics despite the 10% aromatic
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content.These findings highlight that e-petrol may significantly reduce emissions of regulated,
larger than 23nm particles.

3.2.2 Unregulated particle emission results
Particle emissions measured during most emissionsʼ tests, such as the ones discussed above, do not
actually include all of the particles contained in vehicle exhausts. This is because the current method for
measuring PN emissions only includes solid particles larger than 23 nanometers. Particles smaller than
this are not included in the measurement. However, tests show that for petrol engines the emissions of
these very small particles can be substantial and in some cases exceed the emissions of regulated
particles[42].

This means that for many vehicles the majority of particles emitted out of the exhaust are neither
measured nor regulated. This is problematic as it means that the full particle pollution impact of vehicles
is not considered. Additionally, the very smallest particles may be the worst for human health as they
deposit in the lungs with greater efficiency than larger particles[43].

During this testing programme IPFEN measured emissions of particles down to 10 nm (PN10). When PN10
particles were measured total particle emissions remained below the Euro 6 threshold. Nevertheless,
there was a large increase in the total number of particles. On the WLTC test the number of particles
increased 1.7 times for the E10 fuel and 2.1 to 2.3 times for the e-fuel blends with the largest proportional
increase observed for e-fuel 3. On the RDE test the magnitude of the increase was similar for all fuels; 2.2
times for E10 and 2.3-2.4 times for the e-fuel blends. The results indicate that a larger number of currently
unregulated 10-23 nm particles are emitted out of the tailpipe than regulated >23 nm particles for all fuel
types on the RDE test and all e-fuels on the WLTC. The measurement of particle emissions just down to
23nm also ignores a large share of particle pollution.
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Figure 5. Average particle number emissions of all solid particles larger than 10nm of E10 and the three
e-fuels on lab WLTC and RDE test cycles.

The share of 10-23 nm particles vs. PN23 is higher for e-fuels than E10. For E10 on the WLTC test, 41% of
particles were 10-23 nm in size vs. 53-57% for the e-fuels. On the RDE test the difference is somewhat
smaller: 55% (E10) vs. 56-58% (e-fuels) on the RDE test. However, total particle emissions were still
significantly lower for the e-fuel blends than E10, with a reduction in emissions of 97% on the WLTC test
and 81-86% on the RDE test (figure. 5). These findings highlight that the e-petrol tested significantly
reduced emissions of particles even when currently unregulated particle emissions down to 10
nanometers were included in the measurement. However, despite the reduction, e-fuels do not
eliminate particle emissions altogether with at least 2.2 billion particles emitted per km driven on
RDE tests. The data highlights that not measuring particles between 10-23 nm in size, which is
already technically feasible and for which the UN Particle Measurement Programme has developed
a measurement procedure, ignores the majority of particles emitted out of the exhaust on most
tests.

3.3 Carbon Monoxide
Carbon monoxide (CO) is a colourless and odourless highly toxic gas emitted from ICEʼs, produced during
the incomplete combustion of fuel. The Euro VI limit for petrol cars is 1000 mg/km. CLOVE proposes
reducing the limit to 400mg/km for Euro 7[30].

All three e-fuel blends resulted in a large increase in tailpipe CO emissions (figure. 6) on the WLTC cycle of
around 2.5 times the E10 emissions. The increase in CO was largely driven by an increase in emissions
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during the cold start and city driving phase (low phase) of the test where emissions from the three tested
e-fuels were around 3 times higher than the E10 fuel. E-fuel emissions during this period were 1,123-
1232 mg/km and exceeded the Euro 6 emission limit by up to 23%. Such a large increase was not
observed for engine out emissions, with CO emissions increasing by around 10% compared to E10,
suggesting that the large increase in CO emissions is due to the emission control system located in the
exhaust. However, from the data available, it is not possible to determine with certainty the reason for
this.

Figure 6. Average carbon monoxide emissions of E10 and the three e-fuels on lab WLTC and RDE test cycles.

The increase in tailpipe CO emissions for the e-fuels tested was more moderate on the RDE test with
overall e-fuel test emissions 1.2-1.5 times greater than E10. The smaller increase in total CO emissions is
largely due to the longer length of the test (83 km) compared to the WLTC test (23 km) resulting in a
smaller contribution of the cold start period to total test emissions. E-fuel CO emissions measured during
the first 2 km of the RDE test which includes cold start emissions increased by 2-2.5 times compared to
the E10 fuel, show a similar increase as observed on the WLTC test.

The carbon monoxide emissions measured during the tests indicate that carbon monoxide
emissions could increase markedly with the use of e-petrol, especially within the existing fleet where
the engine calibration and the exhaust emissions control system is not optimised for the use of e-fuels. It
is potentially possible that new cars could be optimised for the use of e-fuels and therefore the increase in
CO might not be observed for those cars. However, this could be difficult if varying percentages of drop in
e-fuels are used or e-fuels and fossil fuels are used interchangeably. Based on an annual mileage of
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12,000 km this car running on e-fuels would emit between 528-672 g of CO compared to 444 g running on
E10 .4

3.4 Hydrocarbons
Like carbon monoxide, hydrocarbons (HC) are emitted from ICEʼs due to the incomplete combustion of
fuel. HC contribute to ground-level ozone formation (another harmful pollutant which can inflame and
damage airways[44]) and smog. Many hydrocarbons are also toxic[45]. For petrol cars the total
hydrocarbon limit is 100 mg/km, CLOVE proposes a 25-45mg/km non-methane organic gas (NMOG)
standard which would cover a wider range of chemicals[30] .

HC emissions were low on both tests. Average WLTC hydrocarbon emissions (figure. 7) decreased by
23-40% with the e-fuel blends tested compared to the E10 fuel with all emissions below Euro 6 limits. The
largest decrease was observed during the motorway (extra-high speed) phase of the WLTC of between
54-77%. Due to the lower HC emissions on the RDE test for all fuels <5mg/km the difference between the
fuel blends on this test is not discernable. Overall, the results indicate that there may be a decrease in
hydrocarbon emissions with the use of petrol e-fuels.

Figure 7. Average hydrocarbon (HC) emissions of E10 and the three e-fuels tested on lab WLTC and RDE cycles.

3.5 Ammonia
Ammonia emissions (NH3) contribute to poor air quality as they are a precursor to secondary particle
formation, contributing to PM2.5 (particles smaller than 2.5 micron) pollution. In towns and cities the

4 Based on emissions measured on the RDE test.
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dominant source of ammonia emissions is road transport[46]. Ammonia emissions from cars are not
regulated under the current Euro 6 standard, however a limit of 10mg/km has been proposed by CLOVE
for inclusion in the future Euro 7 standard[30]. For petrol cars ammonia is generated within the three-way
catalyst through a combination of NOx and hydrogen. Hydrogen is typically produced in the engine during
rich operation such as during cold start when the air/ fuel ratio is lower to quickly increase the exhaust
temperature in order to get the three-way catalyst to a sufficient temperature for efficient operation as
quickly as possible.

Overall, on the WLTC test (figure 8) emissions for all fuels were generally low at around 1 mg/km, except
for e-fuel 3 which had higher emissions at 2mg/km. However, a marked increase in emissions of the
e-fuels compared to e10 was observed during the cold start and city driving phase (low phase) of the test,
during this period average emissions of three fuel blends were between 3.5-7 times higher than the E10
blend. But due to the high variability in NH3 emissions between the two tests run with each e-fuel it is
impossible to determine if the increase in NH3 emissions on the WLTC test is due to the e-fuel blend or
variable behaviour of the emission control system.

Figure 8. Average ammonia (NH3) emissions of E10 and the three e-fuels  tested on WLTC and RDE cycles.

On the RDE test however, there was a clear increase in NH3 emissions with e-fuel 2 and 3 of 1.7 and 2.2
times respectively. The main increase in e-fuel emissions compared to E10 was observed during cold start
and city driving in the first 2 km of the test. During this period emissions were 2 times higher for e-fuel 2
and 2.5 times higher for e-fuel 3 compared to the E10 fuel. These results suggest that there could be an
increase in on-road ammonia emissions with the use of petrol e-fuel blends particularly during
shorter trips typical of driving in towns and cities. This car driving 12,000km a year and running on
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e-fuel 2 would emit around 56 g of ammonia a year and 70 g on e-fuel 3. This is almost double the
emissions of E10 today (32 g).

3.6. Aldehydes
Of the aldehydes emitted from petrol cars, formaldehyde and acetaldehyde are the dominant species.
Emissions of these compounds are a significant risk to health as acetaldehyde and formaldehyde are both
considered as probable human carcinogens[47],[48].

3.6.1 Formaldehyde emissions
Tailpipe formaldehyde emissions are not regulated as part of the Euro 6 emission standard, however an
emission limit of 5 mg/km has been proposed for inclusion in the upcoming Euro 7 standard by
CLOVE[30].

Overall emissions of Formaldehyde were very low for all fuels of less than 0.3 mg/km on the WLTC test
and 0.2 mg/km on the RDE test. Aside from the cold start period at the beginning of the WLTC and RDE
test when there is a spike in formaldehyde emissions, emissions were 0.3-1.2 mg/km -most likely due to
the catalyst being below the temperature for optimal conversion- over the rest of the test cycles
emissions were below the measurement equipment minimum detection limit . During the first 3 km of5

the WLTC test there was a 39-62% decrease in formaldehyde emissions, with the largest effect seen for
e-fuel 3. A similar decrease is observed over the first 2 km of the RDE test of 32-67%. These results
indicate that e-fuel use may result in some decrease in formaldehyde emissions during the cold
start period.

3.6.2 Acetaldehyde emission
Acetaldehyde emissions are also not regulated as part of the Euro 6 standard. No direct emission limit has
been proposed for acetaldehyde emission as part of Euro 7, however emissions of this pollutant could be
regulated for Euro 7 as part of the CLOVE proposed non-methane organic gas limit (NMOG) of 25-45
mg/km[30].

As for formaldehyde emissions, acetaldehyde emissions were below the detection threshold for the
majority of both the WLTC and RDE test cycles apart from during the cold start period. Emissions were 3.0
mg/km for E10 and 0.6-1.9 mg/km for the e-fuel blends on the low phase (1st 3km) of the WLTC test and
4.2mg/km for E10 and 0.9-1.9 mg/km for the e-fuel blends on the RDE test. E-fuels 1 and 2 reduced cold
start emissions by 81% on the WLTC cycle. E-fuel 3 had the highest emissions of the three e-fuels tested
only reducing emissions by 37% compared to E10. On the RDE test the reduction was slightly smaller
compared to E10 with 79% for e-fuel 1, 72% for e-fuel 2 and 54% for e-fuel 3. These results suggest that
e-fuel use may result in some decrease in acetaldehyde emissions during the cold start period.

5 For the equipment used this is less than 2.5ppm.
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3.7 Greenhouse gas emissions
Three greenhouse gases (GHG) were measured during this testing programme: carbon dioxide (CO2),
methane (CH4) and nitrous oxide (N2O). Aside from carbon dioxide emissions which are regulated through
a per manufacturer fleet average limit, the other GHG are currently unregulated. This is despite them
both having a much higher global warming potential (GWP)- a measure of how powerful a climate
warming agent is compared to CO2. The GWP of both pollutants are listed in the table 1 below, for
methane the GWP potential for methane of non-fossil origin was used in all subsequent calculations on
the assumption that the CO2 used to make e-fuels in the future will be sourced from DAC. Methane also
has a negative impact on air quality as it is a precursor for the formation of ground level ozone[49].

Table 1. Global warming potential of methane (CH4) and nitrous oxide (N2O) over twenty and one hundred
years[50].

Greenhouse gas
Carbon dioxide equivalent (CO2e)

20-year GWP 100-year GWP

CO2 1 1

CH4 fossil origin 82.5 29.8

CH4 non fossil origin 80.8 27.2

N2O 273 273

3.7.1 Carbon dioxide emissions results
Tailpipe carbon dioxide emissions were reduced by between 3-4% for all three e-fuels, likely due to the
higher hydrogen to carbon ratio of the hydrocarbons which make up e-fuel blends compared to E10 due
to the presence of less aromatic compounds. This results in a proportionally lower carbon content per
volume of fuel compared to E10 resulting in lower CO2 emissions. The higher energy content of e-fuel 1
and 2 (indicated by a higher lower heating value, Annex 1) likely also contributed to lower fuel
consumption and therefore lower CO2 emissions.

3.7.2. Methane emissions and  nitrous oxide emissions results
Emissions of the two GHG were largely similar for all fuels. Methane emissions for all fuels on both tests
were low at 1mg/km. Emissions were below the uncertainty level for the measurement outside of the cold
start period during which emissions increased to around 10mg/km.

Emissions of nitrous oxide (N2O) were similar at 1 mg/km on the WLTC test with the highest emissions
measured during the cold start period of around 7 mg/km. Emissions were slightly higher on the RDE test.
E10, e-fuel 2 and 3 emitted 2 mg/km and higher emissions of 3mg/km were measured for e-fuel 1. As for
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the WLTC test the highest emissions were measured during cold start, particularly for e-fuel 1 with
emissions of 16 mg/km. E10, e-fuel 2 and 3 emissions were lower at around 11-12 mg/km.

The results indicate that for longer trips, for example equivalent to the length of the RDE test undertaken
as part of this testing campaign, the contribution of methane and nitrous oxide to total trip GHG
emissions is relatively small of 0.6-0.8 gCO2e/km based on a 20 year GWP, and 0.5-0.7 gCO2e/km based on
100 year GWP. However, on very short trips -such as the first 2 km of the RDE test- emissions would be
higher due to higher N2O and CH4 emissions at cold start. Emissions during the first 2km of the RDE test
were 4.1-5.1 gCO2e/km based on a 20 year GWP and 3.4-4.6 gCO2 e/km based on a 100 year GWP. This
means that for those drivers who frequently drive shorter trips, which o�en occur in towns and cities,
emissions would be higher.

4. Discussion
4.1 E-fuels impact on air pollution
The results of this testing programme which tested three potential e-petrol blends show that e-fuels are
not a credible solution for consistently reducing all pollutant emissions from road transport, and do not
deliver the NOx reductions that the industry claims[51]. Substituting fossil petrol with e-petrol will do
little to reduce emissions of key pollutants which are harmful to human health or the environment at a
time when the EU needs to drastically cut air pollution to meet new World Health Organisation (WHO) air
quality recommendations.

The tests show that emissions from all fuels stayed below legal limits but switching from fossil to e-petrol
delivers mixed results depending on the pollutant measured. Switching could potentially result in a large
decrease in particle number (PN) emission on the road, there was a 81-86% reduction in PN on the RDE6

test along with some decrease in formaldehyde and acetaldehyde emissions. However, emissions of
these pollutants are far from eliminated. For example for PN, at least 2.2 billion particles are emitted from
the exhaust for every kilometer driven. The e-petrol blends tested also appear to have no impact on
nitrogen oxide (NOx) emission or hydrocarbon (HC) emissions during RDE testing, meaning continuous
emissions of these pollutants equivalent todayʼs levels from future e-fuel driven cars

Worryingly, RDE carbon monoxide emissions (CO) are substantially increased (by 1.2-1.5 times) for all
e-fuels, and ammonia emissions increased by 1.7-2.2 times for two of the e-fuels tested. For ammonia
(2-2.5 times) and carbon monoxide (2-2.5 times), the majority of the increase in emissions was
predominantly observed during the cold start period, i.e. those emissions which occur when the engine is
first switched on. This suggests that the increase in emissions of these pollutants will largely impact on
shorter trips, typically driven in towns and cities. This is supported by the higher variability in emissions

6 For all particles larger than 10nm.

A study by 29

https://paperpile.com/c/deu6bO/317Z


between E10 and the three e-petrol blends tested on the WLCT test which is much shorter, and therefore
cold start contributes to a higher share of emissions.

Analysis by CONCAWE[4], a European oil industry association which tested a potential future 100%
e-diesel blend and a 50:50 e-diesel and conventional B7 diesel blend on a Euro 6d-temp diesel car on
WLTC tests also showed that e-fuels will have little impact on key vehicle pollutant emissions. The results
found that while NOx, CO and HC emissions were slightly reduced, particle emissions were largely
unaffected even with particles down to 10 nm measured. A similar trend was observed for the Euro 5 and
6b diesel cars tested, except for the magnitude of emissions, which as expected was highest for the Euro 5
car and lowest for the Real Driving Emissions (RDE) approved 6d-temp car.

While both sets of testing indicate that the change in emissions of cars running on e-fuels compared to
fossil fuels is dependent on the type of e-fuel used (e-petrol or e-diesel), they strongly indicate that
e-fuels will do little to reduce pollutant emissions from new cars (such as Euro 6d or 6d-temp) or existing
vehicles (such as Euro 5 or Euro 6 cars), counteracting claims from the E-fuel Alliance[25]. Therefore,
transitioning from fossil fuels to e-fuels for diesel and petrol cars will do little to contribute to the
European Commission's Green Deal Zero Pollution[17] ambition to prevent air pollution at source thereby
failing to fix the EUʼs air pollution problems, especially in urban areas. E-fuels are not a credible
alternative to a full transition to zero emission mobility which can actually deliver the clean air across
Europe which EU citizens overwhelmingly demand.

Yet many countries still fail to meet EU Air quality limits today[52] and new World Health Organisation
(WHO) air quality guidelines require 75% less NO2 and 80% less PM2.5 than current EU limits with the WHO
clearly stating that there is no safe level of air pollution[16]. Since road transport is the 1st (NOx) it is
imperative that air pollution from cars and other road vehicles is reduced as quickly as possible for the
sake of EU citizens' health.

This can only be achieved through a tougher new emission standard for cars and vans (Euro 7) currently
under development by the European Commission) for the 95 million cars with conventional engines[53]
expected to still be sold in Europe between 2025 - when the new emission standard is expected to enter
into force - and 2035 when all new car sales are proposed to be zero emission[54]. Only tougher pollutant
emission limits for ICE cars combined with a plan to phase out internal combustion engines and
transition to zero emission alternatives by 2035 through the car CO2 standard is a credible plan for
reducing pollution from cars in Europe. Betting on e-fuels to reduce pollution from ICE cars is unrealistic
and is not a valid alternative to zero emission BEVs.

4.2 E-fuels and greenhouse gas emissions
As already discussed in Section 1.1, e-fuels produced from direct-air capture of CO2 emissions, an
emerging technology with only some pilot plants currently in operation, are generally regarded as carbon
neutral as it is assumed that the amount of carbon dioxide emitted out of the tailpipe is equal to the
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amount of dioxide captured in the air. However, many e-fuels brought to market within the next decade
are likely to not be fully carbon neutral as they will rely on capture of CO2 emissions from industrial fossil
fueled sources -shi�ing those emissions further down the line- rather than directly removing CO2 from the
air. There are also no EU proposals for ensuring that e-fuels, for any application, are fully carbon neutral
from the start so it cannot be automatically assumed that e-fuels are carbon neutral.

In addition, this assumption fails to account for the emissions of other more potent greenhouse gases
produced during the combustion process, in particular methane (CH4) and nitrous oxide (N2O) emissions.
The greenhouse gas emissions measured during this testing programme suggests that the use of e-fuels
in road transport is not fully greenhouse gas neutral.

Total CO2 equivalent emissions for the three petrol e-fuels tested by T&E on the RDE test were between
0.6-0.8 gCO2e/km (20 year GWP) and 0.5-0.7 gCO2e/km (100 year GWP). Multiplied over the typical annual
mileage of an EU car this would be equal to between 7.0-9.3 kgCO2e per year (20 year GWP) or 6.5-9.07

kgCO2e per year (100 year GWP) depending on the e-fuel used to power the vehicle.

Higher methane and nitrous oxide emissions were measured by CONCAWE in their testing of the diesel
e-fuel in a Euro 6d-temp car with CO2 equivalent emissions of 2.0 gCO2e/km (20 year GWP) and
1.96 gCO2e/km (100 year GWP). For a typical EU vehicle this would be equivalent to 24.5 kgCO2e per year8

(20 year GWP) or 23.6 kgCO2e per year (100 year GWP).

Assuming that all new diesel and petrol cars sold in the EU in 2020 running o n e-petrol or e-diesel had9

equivalent methane and nitrous oxide emissions as the Euro 6d-temp cars tested by T&E and CONCAWE.
Total CO2 equivalent emissions of the two greenhouse gases in just one year of driving from new cars sold
in 2020 would be between 100,000-112,000 tonnes (20 year GWP) and 96,000- 108,000 tonnes (100 GWP).
This is equivalent to the CO2 emissions of around an additional 50,000 average EU cars on the road . This10

is a conservative estimate of yearly emissions from new car sales due to historically low vehicle sales in
2020 caused by the Covid-19 pandemic and the use of RDE data for the e-petrol fuel blends, where the
contribution of high methane emissions at cold start is low due to the much longer length of the test
compared to the short city trip which many cars regularly undertake.

10 Based on average yearly CO2 emissions per car of 1.98 tonnes in  2019. Calculated from  total 2019 EU car
fleet CO2 emissions of 481.22Mt obtained from UNFFCC GHG inventories. (2021). EU 2019 car fleet size of 242.7
million obtained from ACEA. (2021-2022) The Automobile Industry pocket guide. 2019 is the latest year for
which both sets of data are available.

9 Sales data from EEA database on CO2 emissions of passenger cars . EEA without UK used for sales figures.

8 Based on an annual mileage of 12,000km a year, the average EU figure in 2018. Source
https://www.odyssee-mure.eu/publications/efficiency-by-sector/transport/distance-travelled-by-car.html.

7 Based on an annual mileage of 12,000km a year, the average EU figure in 2018. Source  Odyssee-Mure
https://www.odyssee-mure.eu/publications/efficiency-by-sector/transport/distance-travelled-by-car.html.
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In addition, there is no EU limit on tailpipe N2O emissions for cars and methane emissions are only
regulated through a weak total hydrocarbon (THC) limit for petrol or a weak combined hydrocarbon and
NOx (HC+NOx) limit for diesel . Therefore, for other cars, emissions of N2O and CH4 could be higher than11

those recorded in CONCAWEʼs and T&Eʼs testing. Indeed for the Euro 5 and 6b cars also tested in
CONCAWEʼs study N2O and CH4 emissions were higher compared to the Euro 6d-temp car suggesting that
use of e-fuels in the older existing fleet vehicles may lead to higher carbon leakage than calculated for the
6d-temp cars. Additionally, since compliance with methane limits is only checked on laboratory tests
during type-approval, on-road emissions could be higher especially during more challenging driving
conditions such as in cold weather[55] when the exhaust emission control system used for methane
oxidation (to CO2 and water) takes longer to heat up.

Even proposed new Euro 7 tailpipe emission limits for cars for both GHGs are not strict enough to12

reduce emissions compared to levels measured on CONCAWEʼs and T&Eʼs tests, indicating that even if
pollutant emission limits are introduced for these GHGs they are unlikely to reduce emissions
significantly compared to emissions measured on these tests. Therefore, even the use of e-fuels in cars
certified to a new Euro standard which limits emissions of the two GHG will result in carbon leakage.

While unaccounted for GHG emissions such as methane and N2O remain, the use of e-fuels in cars and
other road vehicles cannot be considered carbon neutral. Proponents of e-fuels in road transport may
suggest additional carbon capture and storage (CCS) to offset any additional GHG produced from the
burning of e-fuels in internal combustion engines; however this approach is likely to be ineffective. Unlike
CO2 where vehicle fleet emissions can be calculated from the volume of fuel sold in the EU, an accurate
calculator of emissions of the two GHG is likely impossible. This is due to the variability in emissions of
N2O and CH4 produced in the engine and emission control system depending on vehicle model, weather
conditions, and trip composition as discussed above. In effect, the variability in on-road emissions makes
an accurate assumption of fleet emissions, capable of delivering truly net zero emissions through CCS,
impossible. Offsetting emissions of N2O and methane emitted from ICE vehicles running on e-fuels is not
realistic and means that e-fuels in road transport cannot be considered GHG neutral, and the EU should
focus on BEVs which are guaranteed to deliver the expected CO2 and GHG emission savings when running
on renewable electricity.

12 of 10mg/km
11 Compliance with limits is only required on the type-approval WLTC test.
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Part 2
5. Broader considerations of using e-fuels in road transport
Aside from the air pollution impact of using synthetic petrol or diesel in cars there are other equally
important costs, availability and environmental concerns that should be considered. These are
outlined in the following section and based on previous analysis undertaken by T&E.

5.1. E-fuel efficiency in cars
E-fuels in road transport are highly inefficient compared to direct electrification i.e. BEVs meaning that
the use of e-fuels in road transport would require much larger investments in renewables resulting in an
inefficient and expensive transition.

The most effective way to use renewable electricity for road transport is to directly charge electric
vehicles resulting in low losses from generation to use (23%). However, for ICE cars running on e-fuels,
substantial losses occur due to the energy intensive process of making e-fuels and transportation which
results in a loss of 45-48%. The much lower efficiency of the internal combustion engine compared to an
electric powertrain (95% vs. 42%) results in additional large losses. Combined this means that BEVs are
almost 5 times more efficient than ICEʼs running on e-fuels. Today, direct electrification is 77% efficient
compared to 20% for diesel and 16% for petrol running on e-fuels[56].

The low efficiency of e-fuels means that the amount of renewables which would be needed to meet
energy demand from road transport compared to direct electrification is huge. For example if 100% of EU
passenger cars were BEVs, charging them would require 417 TWh in 2050 (just 15% more compared to
current total electricity demand). Swapping just 10% of those cars to e-fuels and another 10% to
hydrogen (which is more efficient than e-fuels by around 50%) would push up electricity demand by 36%.
The 181 additional TWh needed[56], would require 23 additional 2 GW off-shore wind farms taking up an13

area more than 3 times larger than Luxemburg .14

Therefore, the use of such an inefficient energy source in cars and road transport more widely when more
efficient direct electrification is available, will make the decarbonisation efforts unnecessarily costly and
less optimal. The decarbonisation of transport alone will require 2414 TWh of electricity in 2050
equivalent to 305 additional 2 GW off-shore wind farms taking up an area three times the size of

14 Assuming that each 2 GW wind farm is 25km x 15km as detailed in Ricardo. (2020) Renewable electricity
requirements to decarbonise transport in Europe with electric vehicles, hydrogen and electrofuels.

13 Based on a generation capacity of 7.9TWh generation capacity per year as detailed in Ricardo. (2020)
Renewable electricity requirements to decarbonise transport in Europe with electric vehicles, hydrogen and
electrofuels.
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Denmark[56]. To ensure that the clean green transition succeeds and the EU meets its net zero targets in
2050 there is no scope for wasting green electrons and using renewable electricity inefficiently. The use
of e-fuels should be reserved for hard to abate sectors such as aviation and shipping where there are
simply no better alternatives available and where direct electrification is not currently technically
feasible.

5.2 E-fuel costs for consumers
The inefficiency of e-fuels mean that they are also an prohibitively expensive technology for
decarbonising road transport. In 2030, the energy cost to power an efficient petrol car running on
synthetic fuels will be close to four times higher than for a BEV . Depending on the extent to which the
production cost of e-fuels drops in the next decades, the energy cost would be in a range of 3.4 and 4.2
times higher (3.8 on average)[6].

The higher energy demand for production along with high capital investments needed translates to high
e-fuel prices for consumers. Even with optimistic industry assumptions on electricity generation based in
Northern Africa the overall cost of production of e-petrol in 2030 is €1.3/L, rising to a consumer purchase
price of €2.30/L when taxes, levies and transport are included. Producing e-fuel in the EU is likely to be
much more expensive. The International Council for Clean Transportation (ICCT) calculates that in 2030
significant volumes of e-fuels will not be produced within the EU for less than €3-4/L[57]. For comparison
the average consumer petrol price in the EU including duties and taxes over the course of 2021 until the
15th of November was €1.50/L meaning that even under the most favourable cost scenario (imported15

e-fuels) e-petrol would cost the average consumer 40% more than consumers pay today.

For new cars
This in effect means much higher costs for consumers over the lifetime of the car. Already today, the total
cost of ownership (TCO) of a BEV is lower than the TCO of a comparable conventional ICE car in more than
ten European countries without the use of more expensive e-fuel. Over the next decade, the economic16

case for owning a BEV compared to an ICE will only be strengthened thanks to falling battery prices (-60%
between 2020 and 2030), better manufacturing and economies of scale. BEVs are expected to reach
upfront purchase price parity with ICEs in the mid 2020s (without subsidies)[12]. On the other hand, even
under the most optimistic assumption, e-fuel prices will remain higher than todayʼs conventional fuel
price.

Using the most optimistic e-fuel prices, the total cost of ownership of BEV in 2030 would be a third
cheaper than an efficient internal combustion engine car running on e-fuels. Over a 5 year ownership
period a driver with a petrol car running on e-fuel would spend an additional €10,000 compared to a BEV

16 LeasePlan (2021) EV Readiness Index 2021. Leaseplan calculates a lower TCO for BEVs in 11 countries out of
22 European countries. The 11 countries are: Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg,
Netherlands, Norway, Portugal and the UK.

15 European Commission. Weekly oil bulletin. Price based on EU 27 average price of Euro Super 95 petrol.
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owner, an average of €2,000 a year[6]. This is a large amount for a consumer to pay for a fuel that is not
fully greenhouse gas neutral and continues to contribute to air pollution.

For the existing fleet
The e-fuels industry is a big proponent of using e-fuels to decarbonise the existing fleet of ICE cars on the
EUʼs roads[58]. While it is true that the CO2 emissions of these vehicles would be lower if running on 100%
e-fuels or if e-fuel is used as a drop in fuel into existing blends compared to fossil fuels, a second hand
petrol car running on e-fuels would still be around €10,000 more expensive compared to a second hand
BEV over five years. Even running a second hand car on e-fuels is more expensive than buying a new
BEV[6].

The high TCO of ICE cars means that e-fuels are not a realistic option for decarbonising new or existing
cars. The high cost would put a great and unnecessary burden on the average European driver essentially
making this option economically implausible. This is especially the case for the existing fleet of vehicles;
EU consumers who buy second, third or fourth hand cars simply cannot afford the high costs associated
with e-fuels.

If an e-fuels policy for road transport is pursued by the EU, the cost burden will be particularly felt by
citizens in Eastern Europe, many of whom rely on cheap imports of second hand cars from Western
Europe. In 2017 alone Poland imported over 850,000 used cars and Bulgaria 100,000 with the majority of
consumers purchasing a vehicle which is over ten years old[59][60] These consumers simply cannot
afford the high cost of e-fuels. What they require is cheap, readily available second hand BEVs - alongside
better public transport, rail network and, in urban areas, active & shared mobility - all of which offer lower
running costs than e-fuels. So the policy focus should instead be on driving the cost of first hand BEVs
down - via supply side regulations like Cars CO2 or via corporate fleets measures - while also investing into
car alternatives such as shared mobility.

5.3 E-fuel costs for economy
Aside from the cost to the consumer there is a high cost to the economy associated with pursuing road
transport decarbonisation through e-fuels.

Allowing fuel credits within the CO2 regulation- which would allow carmakers to buy credits from fuel
suppliers for synthetic fuels to count towards their CO2 targets, instead of reducing emissions of ICE
vehicles and increasing sales of BEVs - is heavily pushed by the oil and gas industry. However such a route
to CO2 compliance would be very costly for carmakers. T&E estimates that in 2030 it would cost close to
€10,000 to purchase sufficient credits for an efficient petrol car placed on the market. In comparison the
average cost of a BEV battery is expected to fall to €3000. However, this comparison is somewhat
disingenuous as BEVs are expected to reach purchase price parity with petrol ICE in the mid 2020ʼs and
likely to be lower in 2030. Therefore, at this stage, it will not cost carmakers more to produce and sell a
BEV rather than an ICE and the cost of compliance could even be negative[6].
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The higher compliance costs for an efuels pathway will eventually be passed on to the wider society
leading to a less cost effective decarbonisation trajectory for our society and our economy. If in line with
European Commission proposals carmakers are required to reduce CO2 emissions by 55% in 2030, this
would require carakers to sell almost an additional 2.0 million BEVS in 2030 and an additional 3.7 million
BEVs through the 2020ʼs compared to the 37.5% reduction currently required by adopted CO2 regulation.
If instead of selling BEVs carmakers met the difference between old and new CO2 targets through e-fuel
credits, T&E assumes that instead of the 3.7 million additional BEVs the equivalent amount of petrol cars
would be placed on the road. The e-fuels needed for those petrol cars to be counted as zero emission
would cost €65 billion up to 2030. On the other hand the additional battery costs to produce the
equivalent number of BEVs would be €13 billion[6], or a  fi�h of the expected e-fuel cost.

To follow the most cost optimal pathway to 100% zero emission cars by 2035 which is needed to achieve a
fully zero emission fleet by 2050, a more ambitious reduction in CO2 emissions is needed in 2030. This
requires 67% BEV sales in 2030 equivalent to a -80% CO2 reduction[61]. Under this more ambitious -80%
pathway an additional 4.8 million BEVs would need to be sold in 2030 and 25 million through the 2020ʼs. If
the additional CO2 reduction compared to current adopted policies was met through e-fuels instead of
BEVs the additional e-fuel cost through to 2030 is expected to be €441 billion compared to €78 billion for
the additional BEV batteries needed, less than a fi�h of the e-fuel costs .17

This data indicates that pursuing a reduction in new car CO2 emissions through the use of e-fuels is highly
expensive due to the high costs of the e-fuels. This is the case even at optimistic fuel prices which assume
that e-fuels will be imported from outside of the EU, a pathway which T&E considers not fully viable.
Reaching the targets through sales of BEVs is much cheaper both for consumers and the economy.

5.4  Availability of e-petrol and e-diesel in Europe
The current availability of e-fuels for cars within the EU is close to zero . When T&E tried to obtain e-petrol
either directly or through IFPEN in the first half of 2021, needing less than 100l for testing, it was not
possible to secure even a small amount of e-fuel required for testing. No e-petrol or e-diesel was available
for purchase commercially within the EU either as a pure 100% e-fuel or incorporated into existing e-fuels
blends.

At present there are only several operating or planned e-fuel pilot or full scale production plants across
Europe and globally which aim to produce fuel for road transport. Some examples include a test facility at
the Karlsruhe Institute of Technology in Germany[62], the Norsk E-fuel plant in Herøya Norway[63], the
AVL plant in Graz[64] and a joint venture in Punta Arenas, Chile which includes the European car

17 The modelling of compliance for e-fuels and batteries is based on the methodology detailed in T&E. (2021)
E-fools: why e-fuels in cars make no economic or environmental sense.  Expected BEV sales are forecast based
on T&E modelling of car CO2 standards.
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manufacturer Porsche[2]. However, a huge amount of e-fuels would be required to decarbonise new cars,
the existing fleet or both.

To decarbonise an average medium petrol car (C-segment) running on 100% e-petrol and driving
15,000km a year would require 900L of e-fuel just in the first year of use. The Norsk e-fuel plant in18

Norway has a planned annual production capacity of 10 million litres in 2023 and 100 million by 2026.
Even if 50% of the e-fuel produced is e-petrol designated for road use, (this is highly optimistic as up to
70% could be e-kerosene for aviation with around 22% for road fuels[65] likely a mixture of diesel and
petrol) the produced fuel would only be enough to decarbonise 5,600 c-class petrol cars in 2023 and
56,000 in 2026 . Similarly the Graz plant may produce 240 million litres of e-fuels in 2030[64], based on19

the same assumptions this would only be enough for 133,000 cars. In comparison before a slowdown in
sales in 2019 due to Covid-19, 13 million cars were sold in the EU and T&E forecasts that in 2035 12.520

million will be sold clearly indicating the size of the challenge for the scale up of e-fuels if they were to21

contribute to the decarbonisation of cars and road transport. This is without even considering how much
e-fuel would be needed to decarbonise the EUʼs existing car fleet which stood at over 242 million cars in
2019 and is continuing to increase, with ownership rates particularly increasing in Eastern and Southern
Europe[66].

T&E forecasts that to meet the proposed -55% CO2 reduction in 2030, and replace the expected 3.7 million
extra BEVs that would be sold through to 2030, would require 50 billion litres of e-fuel up to end of 2030,
with 23 billion required in 2030 alone. 2030 demand is equivalent to 454 Norsk e-fuels plants or 189 Graz
plants . Under the more ambitious -80% reduction in 2030 over 300 billion litres would be required up to22

the end of 2030, 71 billion litres in 2030 alone equivalent to 1415 Norsk e-fuel plants or 590 Graz e-fuel
plants . Even with a larger sized e-fuel plant such as the Haru oni plant in Chile which is expected to23

produce 550 million litres of e-petrol in 2026[67],[68], 41 plants would be needed to meet the demand in
2030 based on the -55% reduction scenario or 129 based on the -80% scenario if all of the production

23 Fuel volume required in based on the methodology for calculating e-fuel costs outlined in T&E. (2021)
E-fools: why e-fuels in cars make no economic or environmental sense.  Expected BEV sales are forecast based
on T&E modelling of car CO2 standards..

22 Based on Norsk production of 100 million litres per year or Graz production of 240 million litres a year with
50% of production dedicated to e-petrol which is an optimistic assumption.

21 TT&E estimates based on production trends and the some level of imports/ exports as in 2019.

20 EU27 without the UK, EEA database on CO2 emissions of passenger cars.

19 Based on an average  annual mileage of 15,000km. 225,000 km lifetime mileage based on the European
Commission study on LCA, as detailed in Ricardo Energy & Environment (2020), Determining the environmental
impacts of conventional and alternatively fuelled vehicles through LCA. Final Report for the European
Commission. On average this is 15,000km per year over 15 years.

18 Based on an average  annual mileage of 15,000 km for a C-segment car ( compared to 12,000 km for the
average EU car fleet). 225,000 km lifetime mileage based on the European Commission study on LCA, as
detailed in Ricardo Energy & Environment (2020), Determining the environmental impacts of conventional and
alternatively fuelled vehicles through LCA. Final Report for the European Commission. On average this is
15,000km per year over 15 years. Fuel consumption is assumed at an optimistic 6L/100km based on the fuel
consumption of todayʼs petrol hybrids.
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capacity was dedicated to road transport and kept/exported to the EU. Based on what has been
announced to date, this is not feasible. This is without even considering the amount of e-fuel that would
be required to decarbonise the 252  million ICE cars that would be on the road in 2030 .24

In contrast there will be sufficient European supply of battery cells. As of May 2021, 17 out of 38 battery
call gigafactories announced in Europe have secured full funding and a further ten projects have secured
partial funding. If these projects come online as expected, they will result in 462 GWh of battery capacity
produced in Europe by 2025 and 1,144 GWh by 2030. If all these projects are delivered, the planned
battery manufacturing capacity would be sufficient to power around 50% electric car sales in Europe in
2025 (32% BEV) and more than 90% in 2030 (75% BEV). This corresponds to a car CO2 reduction target of
44% in 2025, 62% in 2027 and 91% in 2030 indicating[69] that there will be sufficient battery
manufacturing capacity in Europe to not only meet the new more ambitious CO2 targets proposed by the
Commission in July of 2021 but to further increase the rate of electrification between 2025 to 2030.

Another suggestion of the e-fuels industry also suggests to use e-fuels as drop-in fuels[25] into existing
fuel blends, for example a blend of 40% e-petrol and 60% E10 petrol. However, aside from having a much
smaller climate benefit than 100% e-fuel and continuing the dependence of fossil fuels this option may be
more difficult than the fuel industry suggests. When IFPEN tried to blend paraffinic e-petrol with ethanol
the blend separated out like oil and water i.e. the blend was immiscible. Even when up to 20% aromatic
content was introduced the blend still separated out at cold temperature. In the end 5% fusel oil had to
be added (as a surfactant) to form a stable blend. This suggests that blending paraffinic e-petrol into
existing E10 fuel at high concentrations may result in blending issues which the fuel industry would have
to solve through the use of additional additives potentially leading to higher costs.

Betting on e-fuels to decarbonise cars and road transport either partially or fully is not credible at a point
when serious investment in EU battery cell and BEV manufacturing is taking off. It risks reducing and
delaying planned investment in zero emission technology which is already available, can deliver the CO2

reductions required to meet the EUʼs 2050 net zero ambitions as well as key intermediate targets (-55% in
2030) and, crucially, wanted by consumers as evidenced by skyrocketing BEV sales. Frustrating EU efforts
to get ahead in the zero emission e-mobility race by investing in e-fuels for cars, leaves the door open for
Chinese and non-EU manufacturers to grab EV market share, diverting investment away from the EU and
risking EU jobs.

It also poses a serious systematic risk to the EUʼs decarbonisation efforts as there is no guarantee that
e-fuels will be scaled rapidly enough over the next 14 years to decarbonise new ICE cars in sufficient
volume to allow the EU to meet its 2030 (-55%) and later targets (net zero 2050). All new cars sold in the
EU have to be zero emission by 2035 for only zero emission cars to be le� on the road by 2050. But if the
EU bets on e-fuels, and no e-fuels for road vehicles materialise, the lack of e-fuels combined with stalled

24 Based on T&E internal modelling tool (EUTRM) that accounts for BEV sales required by the car CO2 standards
(European Commission proposal targeting a -55% emission reduction in 2030) and the fleet turnover.

A study by 38

https://paperpile.com/c/deu6bO/7CnC
https://paperpile.com/c/deu6bO/KZ9d


BEV investment may mean that the EU ends up in 2030 with no pathway to decarbonise cars. Or the rapid
and unnecessarily compressed scale up of BEV may then be necessary to decarbonise cars that will be
incredibly expensive for consumers and the economy. This may yet again leave the door open to Chinese
and non-EU car manufacturers to grab market share as the EU may end up with no other choice but to
import BEVs to meet its climate targets. Rather, the EUʼs efforts for e-fuels should be focused on the
aviation and maritime sectors, sectors which have essentially no other option for clean energy vectors.

5.5 Other environmental risks
Inadvertently, if e-fuels are used for road vehicles they will need to be transported from production sites
to fuel stations across EU Member States, with widespread coverage necessary for easy consumer access.
This will require the movement of liquid hydrocarbons by pipeline, tank truck and even tanker vessel if, as
envisaged industry e-fuel is produced and distributed globally[58]. Such operations carry the same risk of
leakage or spillages as fossil fuels, which have devastating effects on the environment as well as human
health.

While e-petrol and e-diesel is likely to contain less or no aromatic compounds (depending on blend) such
as carcinogenic polycyclic aromatic hydrocarbons or benzene, aliphatic hydrocarbons (products of the
Fischer-Tropsch reaction used to make e-fuels from direct air capture), the likely dominant building
blocks of e-diesel (C10-C19 hydrocarbons i.e hydrocarbons with a chain length of 10-10 carbons) and
e-petrol (C4-C12 hydrocarbons)[70] are also harmful to health and the environment. Maximum exposure
limits have been determined for humans for these hydrocarbon chemical mixtures due to their possible
neurotoxicity[71] and breakdown of these chemicals in the environment can form toxic and carcinogenic
compounds [72]. Spillages of e-fuels pose a risk not just to humans but also the environment including
fragile ecosystems such as marine life and coral reefs.

Continuing the use of hydrocarbon based fuels for cars and other road transport, even if produced from
electricity (e-fuels) continues to pose an unnecessary environmental health risk when less risky direct
electrification exists for this transport segment .

6. Summary and Policy recommendations
The use of e-fuels in internal combustion engined (ICE) cars will not solve the EUʼs air pollution problems.
Testing of three different e-petrol blends in a Euro 6d-temp car on the chassis dyno on WLTC and RDE
cycles as detailed in this report have shown that e-fuels are not a clean burning fuel and, apart from
particle number emissions, will do little to reduce toxic pollutant emissions of both regulated and
unregulated pollutants compared to EU E10 fuel. Crucially, the e-fuels had no impact on NOx emissions,
the pollutant which many European cities still struggle with illegal levels of, and on RDE type tests no
effect was seen for hydrocarbons. Emissions of toxic carbon monoxide were substantially increased, and
so were emissions of ammonia which contributes to particle pollution. The only pollutant for which
emissions were reduced by a large amount were particle number emissions. However, no such reduction
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was observed for particle mass. At a time when 2 out of 3 citizens of the EUʼs biggest cities demand
protection from air pollution and stricter WHO air quality guidelines require large reductions in air25

pollution concentrations for the protection of EU citizens' health, the EU and Member States need
credible and effective plans for slashing toxic pollution from cars. E-fuels will not eliminate or significantly
reduce pollution from cars and cannot be considered as part of clean air strategies. The only solution for
fully cleaning up pollution from cars are zero emission vehicles.

Measurement of greenhouse gas emissions during the testing also suggests that the use of e-fuels in road
transport is unlikely to be fully climate neutral. While it is generally assumed that CO2 emissions of e-fuels
produced from direct capture of CO2 from the atmosphere are carbon neutral, the production of the two
more potent greenhouse gases - methane and nitrous oxide - in the engine and exhaust emission control
system is not accounted for. T&E estimates that emissions of methane and nitrous oxide in just one year
of driving by new diesel and petrol cars sold in 2020 running on e-fuels would be equivalent to the
CO2 emissions of an extra 50,000 cars on the EUʼs roads. Due to the variability in production of those
greenhouse gases depending on driving conditions, it is highly doubtful that the emissions of these
potent greenhouse gases could ever be effectively offset through initiatives such as carbon capture and
storage, meaning that the use of e-fuels in road transport would result in unaccounted for greenhouse gas
emissions.

The results of this study highlight that the use of e-fuels in road transport makes no sense where more
efficient, cleaner and, when running on renewable electricity, 100% carbon neutral direct electrification
technology exists. BEVs are both good for the climate and for air quality as they eliminate tailpipe
pollution altogether. E- fuels on the other hand are highly inefficient - they are almost five times less
efficient than BEVs - and still produce air pollution. Ironically, making e-fuels for road transport using a lot
of renewable energy - turns them into a polluting fuel that is  no better than the  fossil fuels they replace.

The reality is that e-fuels are just not a credible solution for reducing air pollution, or decarbonising new
cars or the existing fleet, due to inefficiency, cost and because they are needed in hard to abate sectors
like aviation where no better alternatives exist. Betting on e-fuels to decarbonise cars within the next 14
years, is fraught with risk since there isn't even any e-petrol or e-diesel available for consumers to buy
today.

If the 3.7 million additional BEVs which need to be sold up to 2030 to reach -55% CO2 in 2030 vs. the
currently adopted -37.5% were replaced with petrol cars running on e-fuels, 23 billion litres of e-petrol
would be required in 2030 alone. There is currently no credible plan available for putting this much e-fuel
on the EU market, but gambling that these fuels will materialise within the next nine years will stall
planned investment in BEVs. This risks making the EU locked into at least another decade of fossil fuels

25 A pan European by YouGov of 21 of Europeʼs largest cities show  and 2 out of 3 do not want to go back to the
levels of pollution experienced before the lockdown. Source:T&E. No going back: European public opinion on
air pollution in the Covid-19 era.
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and the EU missing its climate targets if the promised e-fuels never materialise and insufficient BEVs are
available -due to stalled manufacturing investment- to fully decarbonise new car sales by 2035. This is the
last date by which all new car sales have to be ZEV to ensure that only zero emission vehicles are le� on
the road by 2050 in order to meet the EUʼs 2050 net zero target.

Policymakers need to see e-fuels in road transport for what they really are, - a Trojan Horse for the old
industry, i.e. a way for some in the automotive, fuel and gas industry to keep the polluting internal
combustion engine alive at a huge cost to consumers and the wider economy and not a credible pathway
to decarbonising cars. T&E recommends that:

1. Car, van and truck CO2 vehicle standards cannot allow any credits for e-fuels. Adding e-fuels
to the vehicle CO₂ regulations would greatly weaken its effectiveness for decarbonising vehicles
sold in the EU. Carmakers would be able to buy fuel credits for compliance, with no guarantee
that consumers would purchase the more expensive e-fuels or that sufficient volumes of such a
fuel would be available in the market. The effectiveness would also be watered down when
mixing different sectors (downstream transport vs. upstream fuels), already covered in effective
sector-specific legislation. Ultimately fuel credits will undermine the credibility and enforceability
of vehicle regulations.

2. More ambition on car CO2 standandards is required to drive the swi� uptake of zero emission
vehicles for the climate as well as air pollution.

a. EU policymakers must ensure that the EU car CO2 standards reduce CO2 emissions from
new cars by 30% by 2025, 45% in 2027, 80% by 2030 and by 100% in 2035 at the latest.
This will ensure a timely ramp up of battery electric cars including within the wider supply
chain, to ensure they are available in time and affordably as Europe needs to transition to
emobility en masse in order to meet its climate targets.

b. Flexibilities embedded into the car CO2 regulation will weaken the already inadequate
CO₂ standards by allowing carmakers to cut and slow down planned BEV production
and/or increase emissions from their conventional models and still remain compliant
with the targets. T&E therefore recommends to improve the design of the regulation by:

■ Removing the ZLEV benchmark and corresponding carmaker CO₂ bonus from
2025.

■ Updating the tests to provide realistic CO₂ rating of PHEVs, with the help of
real-world data from fuel consumption meters.

■ Stopping the free CO₂ pass for heavier cars by removing the mass adjustment
factor as well as limiting the CO₂ savings that can be claimed from eco
innovations.

■ Banning the sales of conventional models with CO₂ emissions above 120g/km
(mostly SUVs) as of 2030.
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3. EU target setting for deployment of e-fuels a.k.a renewable fuels of non-biological origins
(RFNBOs) must avoid setting targets for the use of these fuels in road transport, where more
efficient alternatives such as direct electrification exist. T&E strongly supports the development
of green e-fuels for those transport sectors, such as shipping or aviation, where no better
alternatives exist but EU-level target-setting must avoid incentivising use in road transport .

Instead, key pieces of legislation of the ʻfit for 55ʼ-package regarding e-fuels - the upcoming
review of the Renewable Energy Directive (RED) and the proposed regulations under the RefuelEU
Aviation and FuelEU Maritime initiatives - must require fuel suppliers to deliver the efuels
volumes needed to get the decarbonisation of planes and ships underway, a�er decades of
inaction and rising emissions. T&E proposes to introduce a 2030 target on fuel suppliers to
meet 1.6% of transport demand with RFNBOs (an umbrella term in the RED) for all hydrogen
and efuels. The 1.6% target incorporates a subtarget of 0.8% for fuels supplied to the maritime
sector[73]. A 2% e-kerosene mandate on fuel suppliers to the aviation sector also contributes to
reaching the 1,6% target[74]. This target level promotes an ambitious supply of e-fuels in the
aviation and shipping industry, yet also takes into account the challenges involved in deploying
the additional renewable electricity capacity needed.

4. An ambitious new Euro 7 pollutant emissions standard is required for cars, vans, trucks and
buses alongside a clear roadmap to zero emission vehicle sales. Only an ambitious new
emission standard in 2025 applicable to all fuels and powertrains including efuels, coupled with a
coherent roadmap to phasing out internal combustion engine cars (via the CO2 standards) by
2035 at the latest, will bring about the air quality improvements that Europe needs. The new
standards must as a priority:

a) Reduce the outdated Euro 6 limits to the lowest limits globally based on the best
available technology. As a minimum this should be aligned with the most ambitious
emissions limits proposed by CLOVE ( the consortium of experts working on behalf of the
Commission on Euro 7), such as a 20 mg/km NOx limit and a 1x1011/km particle number
(PN) emission limit. While the tests undertaken during this testing project do not cover all
possible driving conditions, NOx emissions with standards EU fuel were close to 20mg/km
and PN emissions were below the proposed 1x1011/km indicating that the proposed
ambitious Euro 7 limits can already be met under some driving conditions by cars with
today's technology.

b) Regulate all pollutants harmful to human health or the environment. This must
include all particles larger than 10nm, ammonia, non-methane organic gases and the
greenhouse gases methane and nitrous oxide. This testing programme has particularly
shown that it is critical to regulate currently unregulated 10-23nm as emissions of just
those small particles can be close to the emissions of all currently regulated particles
meaning that a large amount of particle pollution is currently ignored by official tests.
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c) Ensure that all possible EU driving conditions are covered by official tests so that
emission limits have to be met wherever and whenever a car is driven. Any driving
conditions which regularly occur within the EU such should be covered by the emission
limits without any additional multipliers.

d) Ensure that limits are met throughout the entire lifetime of the vehicle by ensuring
that limits and in-service conformity testing requirements apply for a minimum of
240,000km and 20 years with deterioration factors applicable therea�er.

5. No EU or Member State financial financial support should be provided for the use of e-fuels
in road transport. Direct electrification should be encouraged in road transport as much as
possible, whereas the development and scale-up of renewable e-fuels should be supported for
aviation, maritime and other heavy industry. As such, no EU or Member State support should be
provided for road transport e-fuels specifically, but rather for their use in the sectors where they
are needed for decarbonisation due to lack of better alternatives.

For a successful green transition it is critical that the EU focuses on the most efficient pathway for
decarbonising each transport mode. For cars and road transport the best solutions are direct
electrification which can both eliminate CO2 emissions and put an end to toxic tailpipe pollution. E-fuels
must be saved for hard to decarbonise sectors such as aviation where simply no better alternative exists.

A study by 43



Annex 1

Table 2: Properties of the four tested fuels.

Unit Limit (EN228)* Method Results

Min Max E10 Fuel1 Fuel2 Fuel3

Copper strip
corrosion (3h,
50°C)

Rating Class 1 EN ISO 2160 1b 1 1 1

Oxidation
stability

Minutes 360 EN ISO 7536 >480 >960 >960 >960

Existent gum
content (solvent
washed)

mg/100mL 5 EN ISO 6246 <1 <0.5 <0.5 <0.5

Existent gum
content

6 0.5 0.5 0.5

PHYSICAL PROPERTIES

Density @ 15°C kg/m3 720 775 EN ISO 3675 748.4 763.3 726.0 741.0

DVPE @ 37.8 °C kPa 45
summer

60 winter

60
summer

90 winter

EN ISO
13016-1

56.4 55.2 60.9 66.2

DISTILLATION

IBP °C EN ISO 3405 35.0 49.7 39.8 44.8

5%Vol °C 50.9 53.6 49.9 47.3
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10%Vol °C 55.1 54.1 52.6 48.0

20%Vol °C 60.2 55.1 55.3 49.1

30%Vol °C 64.8 56.4 58.6 50.3

40%Vol °C 70.0 57.8 62.9 51.7

50%Vol °C 94.1 60.0 69.3 53.4

60%Vol °C 102.6 63.7 78.4 56.8

70%Vol °C 107.5 70.5 90.3 66.5

80%Vol °C 114.1 85.7 98.7 80.6

90%Vol °C 134.2 99.3 101.1 98.5

95%Vol °C 160.4 100.5 102.2 100.1

FBP °C 210 176.6 106.0 107.3 106.5

Residue %Vol 2 1.0 1.0 0.9 0.9

E 70°C %Vol 22
summer

24 winter

50
summer

52 winter

40.0 69.5 50.9 73.1

E 100°C %Vol 46 72 56.1 92.9 82.8 93.4

E 150°C %Vol 75 92.9 >99.0 >99.0 >99.0
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COMPOSITION

Ethanol %Vol 10 EN ISO
22854

9.3 <0.1 <0.1 9.9

Olefins %Vol 18 6.8 17.0 17.0 13.9

Aromatics %Vol 35 26.0 <0.1 10.0 <0.1

Benzene %Vol 1 <0.1 <0.1 <0.1 <0.1

OCTANE INDEX

RON Index 95 EN ISO 5164 97.1 102.3 104 104

MON Index 85 EN ISO 5163 86.3 87.3 89.3 88.0

COMBUSTION

Net calorific
value in mass

MJ/kg ASTM D
240-Calculat

ed

41.36 42.80 42.77 40.00

O/C v/v Calculated 0.032 - - 0.051

H/C v/v 1.937 2.036 2.030 2.135
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